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1. Introduction 

Plasma, an ionized gas, is most often encountered in the form of astronomical-sized 
bodies known as stars, familiarly our sun. However, the advent of ultrashort pulse 
lasers (USPLs) has allowed for the creation of intense plasma sources in the 
nanoscale of both time and space. USPLs have pulse durations of a few picoseconds 
or shorter that translate a small amount of energy (tens of joules or less) into 
enormous peak powers on the order of gigawatts to petawatts. When focused in air, 
these intense pulses are able to ionize nitrogen and oxygen molecules, creating 
localized plasma sources. These plasmas diminish as the ionized molecules and 
atoms recombine with liberated electrons, typically on the timescale of a few 
nanoseconds. The challenge remains to diagnose plasmas via the free electron 
density in this short window of time and often in a small volume of space. 

USPLs of sufficient intensity are able to augment the index of refraction of 
transparent media, particularly air. This positive change to the index of refraction 
causes what is known as Kerr self-focusing. As the intensity increases through 
focusing, eventually the threshold for ionization is exceeded, creating a plasma as 
described previously. Plasma itself has the effect of lessening the index of 
refraction—in fact, the index of refraction is less than one and defocusing occurs. 
If the self-focusing can be balanced against the defocusing, a quasi-stable 
propagation state can be achieved known as a filament.1–3 The filament contains 3 
key components: 1) an intense laser core sufficient to create a plasma, 2) an energy 
reservoir around the core of laser light sufficient to self-focus but less than that 
required for ionization, and 3) a plasma created by the intense core that lasts a few 
nanoseconds after the laser pulse. Much insight into filamentation remains to be 
gained by understanding the plasma and how it evolves in space and time. In 
particular, research concepts that seek to use the plasma component of 
filamentation to guide electromagnetic radiation4–9 and electrical discharges10–12 
would depend critically on the evolution and structure of the free electron density. 

Current concepts to measure the free electron density in USPL-created plasmas are 
limited in the number of space-time dimensions that can be measured 
simultaneously. One method to measure USPL-created plasmas is to “pick off” a 
small portion of the laser energy to use as a probe. This allows researchers to probe 
with subpicosecond time resolution and synchronize with the driving pump pulse. 
However, the fidelity required to measure small changes in the electron density can 
be hard to achieve given typical USPL wavelengths, the most common being  
800 nm. A common method to do this is to measure the perturbation of the phase 
of the probe beam when it is interfered against a reference beam, known as 
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interferometry.13,14 This method is often limited in sampling only one spatial 
dimension at a time, and the minimum resolution in phase is related to the probe 
wavelength. Other methods include measuring the charge generated by the free 
electrons,15 holography,16 or fluorescence.17,18 However, these methods provide 
neither great temporal nor spatial resolution simultaneously. 

An improved method would enable researchers to gain high 2-D spatial resolution 
data on the electron density from a single laser pulse. To meet this requirement, the 
method proposed here incorporates the principle of phase perturbation from 
interferometry but resolves that through geometrical focusing. This concept is 
known as Shack-Hartmann interferometry19 and is derived from a clear need in 
astronomy to diagnose phase changes to light observed from outer space traveling 
through terrestrial atmosphere via adaptive optics. In the case discussed here, the 
phase changes are created by the free electrons accumulated in the phase of the 
probe laser beam.20 Shack-Hartmann uses a microlens array to divulge the change 
to the phasefront of the probe beam as illustrated in Fig. 1. When an unperturbed 
(reference) beam passes through a microlens array, each lens focuses its portion of 
the probe beam onto a specific point on a detection device, usually a charge-coupled 
device (CCD) camera. When the perturbed beam then passes through the microlens 
array, small changes in the phase cause the focal point to shift on the camera plane. 
By using complex algorithms, the shift in focal point, Δxn, can be translated into 
the change in phase for the sampled section of the probe beam. If we assume a 
radial symmetric electron density profile (from a radial symmetric laser pulse), we 
can then infer the electron density variation from the accumulated phase change 
from that section of the probe beam. From this we can build a rough idea of the 
electron density variation in the filament. Described in this report is an optical 
system built around this concept known as the Shack-Hartmann Electron 
Densitometer (SHED). 
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Fig. 1 Shack-Hartmann effect where (top) a probe laser with a known phasefront passes 
through a lenslet array onto a CCD camera and (bottom) a plasma in the probe path causes 
changes to the phasefront resulting in displacement, Δxn, of focal spots 

2. Optical Effects of Plasma 

Electromagnetic radiation, particularly lasers pulses, is affected by the free 
electrons in a plasma in a very different manner than other forms of matter. While 
solids, liquids, and gasses have a refractive index greater than 1 and vacuum has an 
index of refraction of 1, plasmas have a refractive index between 0 and 1. Because 
of the comparative mass between electrons and ions, the effects from ions are 
generally ignored. If we propagate a laser beam with wavelength λ in the x direction 
through a plasma with electron density ne (Fig. 2a), via Snell’s law, we can calculate 
the change to the phase of the probe, θ, by20 

 𝜃𝜃 = 1
2 ∫

𝛻𝛻𝑛𝑛𝑒𝑒∙𝑑𝑑x
𝑛𝑛𝑐𝑐𝑐𝑐(𝜆𝜆)

 , (1) 

where ncr is the critical density. The equation for the critical density is given as 

 𝑛𝑛𝑐𝑐𝑐𝑐(𝜆𝜆) = 𝜖𝜖0𝑚𝑚𝑒𝑒 �
2𝜋𝜋𝑐𝑐
𝜆𝜆𝑒𝑒
�
2
≈ 1.12×1021

𝜆𝜆[µm]2
[cm−3] , (2) 

where 𝜖𝜖0 is the vacuum permittivity, c is the speed of light, and me and e are the 
electron mass and charge, respectively. We will assume 2 different types of plasma 
geometry: 1) cylindrical from a collimated, radially symmetric plasma and 2) 
spherical from a plasma that is formed around a specific point and expands with 
radial symmetry.  
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Fig. 2 Illustrations of probe interrogation of plasma a) probe propagates from probe plane 
to detector plane, b) Gaussian electron density profile, and c) parabolic density profile 

2.1 Cylindrical Geometry 

This geometry is a first-order approximation of that created in the filamentation 
process. Let us assume that the cylindrical plasma is along the z direction with 
radial geometry propagating outward in the x and y directions. We start by breaking 
the laser probe pulse traveling the in the x direction into y components leading to 
the density gradient of 

 ∇𝑛𝑛𝑒𝑒 = 𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝜕𝜕

. (3) 

If we center the plasma at x = 0 and have the probe travel a distance d to the plasma 
center then a distance D to the detector plane with an optical magnification of M, 
we can rewrite Eq. 1 given Eq. 3 as 

 𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐(𝑦𝑦) = 𝑀𝑀
2𝑛𝑛𝑐𝑐𝑐𝑐

∫ 𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝐷𝐷

−𝑑𝑑 . (4) 

If we assume a radial Gaussian electron density centered on the z axis (Fig. 2b), 
then 
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 𝑛𝑛𝑒𝑒,𝐺𝐺(𝑟𝑟) = 𝑛𝑛0exp(𝛼𝛼𝑟𝑟2), (5) 

where n0 is the peak electron density, r is the radius given by 𝑟𝑟 = �𝑑𝑑2 + 𝑦𝑦2 , and  

 𝛼𝛼 = − ln2
𝑐𝑐𝑓𝑓
2   

with rf being the half-width at half maximum of the extent of the plasma. 
Substituting into Eq. 4, we arrive at the following equation for integration: 

 𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝐺𝐺(𝑦𝑦) = 𝛼𝛼𝛼𝛼𝑦𝑦 𝑛𝑛0
𝑛𝑛𝑐𝑐𝑐𝑐

exp(𝛼𝛼𝑦𝑦2)∫ exp(𝛼𝛼𝑑𝑑2)𝑑𝑑𝑑𝑑𝐷𝐷
−𝑑𝑑  . (6) 

Equation 6 can be integrated directly to the solution 

 𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝐺𝐺(𝑦𝑦) = 𝐴𝐴𝑐𝑐𝜕𝜕𝑐𝑐𝑦𝑦 exp�𝐵𝐵𝑐𝑐𝜕𝜕𝑐𝑐𝑦𝑦2� , (7) 

where 

 
𝐴𝐴𝑐𝑐𝜕𝜕𝑐𝑐 = 𝛾𝛾 𝑀𝑀𝑛𝑛0√𝜋𝜋

2𝑛𝑛𝑐𝑐𝑐𝑐
[erf(𝛾𝛾𝛾𝛾) + erf(𝛾𝛾𝑑𝑑)]

𝐵𝐵𝑐𝑐𝜕𝜕𝑐𝑐 = −𝛾𝛾2

𝛾𝛾 = √−𝛼𝛼

.  

If instead we assume a parabolic electron density (Fig. 2c) such that  

 𝑛𝑛𝑒𝑒,𝑃𝑃(𝑟𝑟) = �
𝑛𝑛0 �1 − 𝑐𝑐2

2𝑐𝑐𝑓𝑓
2� , 𝑟𝑟 ≤ √2𝑟𝑟𝑓𝑓

0, 𝑟𝑟 > √2𝑟𝑟𝑓𝑓
 , (8) 

where we assume 𝑑𝑑,𝛾𝛾 ≥ √2𝑟𝑟𝑓𝑓, we then arrive at the following evaluation of Eq. 4: 

 𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝑃𝑃(𝑦𝑦) = − 𝑀𝑀𝑛𝑛0
2𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓

2 ∫ 𝑑𝑑𝑑𝑑𝑥𝑥0
−𝑥𝑥0

 , (9) 

where 𝑑𝑑0 = �2𝑟𝑟𝑓𝑓2 − 𝑦𝑦2. Upon integration of Eq. 9, we arrive at 

 𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝑃𝑃(𝑦𝑦) = − 𝑛𝑛0
𝑛𝑛𝑐𝑐𝑐𝑐

𝑀𝑀𝜕𝜕
𝑐𝑐𝑓𝑓
�2 − � 𝜕𝜕

𝑐𝑐𝑓𝑓
�
2

. (10)
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2.2 Spherical Geometry 

Spherical geometry better approximates the plasma created by a sharply focused 
laser pulse. The mathematics is similar except that we now have plasma density 
variation in the z direction, too. We again assume radially symmetric density 
variations that lead to a revision of Eq. 3 to be 

 ∇𝑛𝑛𝑒𝑒 = 𝜕𝜕
𝜕𝜕𝜕𝜕
𝑛𝑛𝑒𝑒(𝑟𝑟) , (11) 

where 

 
𝜌𝜌2 = 𝑦𝑦2 + 𝑧𝑧2

𝑟𝑟2 = 𝜌𝜌2 + 𝑑𝑑2
.  

This leads to a new equation for the deflection angle: 

 𝜃𝜃𝑠𝑠𝑠𝑠ℎ(𝑦𝑦, 𝑧𝑧) = 𝑀𝑀
2𝑛𝑛𝑐𝑐𝑐𝑐

∫ 𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑𝐷𝐷

−𝑑𝑑 . (12) 

Looking at the Gaussian distribution case but in 3 dimensions, we arrive at 

 𝜃𝜃𝑠𝑠𝑠𝑠ℎ,𝐺𝐺(𝑦𝑦, 𝑧𝑧) = 𝜌𝜌𝐴𝐴𝑠𝑠𝑠𝑠ℎexp�𝐵𝐵𝑠𝑠𝑠𝑠ℎ𝜌𝜌2� , (13) 

where 

 
𝐴𝐴𝑠𝑠𝑠𝑠ℎ = 𝛾𝛾 𝑀𝑀√𝜋𝜋𝑛𝑛0

2𝑛𝑛𝑐𝑐𝑐𝑐
[erf(𝛾𝛾𝛾𝛾) + erf(𝛾𝛾𝑑𝑑)]

𝐵𝐵𝑠𝑠𝑠𝑠ℎ = −𝛾𝛾2
.  

Similarly, with a parabolic density profile in 3 dimensions, we arrive at  

 𝜃𝜃𝑠𝑠𝑠𝑠ℎ,𝑃𝑃(𝑦𝑦, 𝑧𝑧) = − 𝑛𝑛0
𝑛𝑛𝑐𝑐𝑐𝑐

𝑀𝑀𝜕𝜕
𝑐𝑐𝑓𝑓
�2 − �𝜕𝜕

𝑐𝑐𝑓𝑓
�
2

. (14) 

2.3 Discretized Solution 

Equations 7, 10, 13, and 14 arrive at a solution by approximating the electron 
distribution with a function. It is important to also evaluate Eq. 1 with a discretized 
solution that can be solved and inverted directly from data. This method also lends 
itself to eventual 3-D reconstruction given 2 or more probe beams. We begin by 
differentiating Eq. 1 to get 
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 Δ𝜃𝜃 = 1
2𝑛𝑛𝑐𝑐𝑐𝑐

∇𝑛𝑛𝑒𝑒 ∙ ∆x , (15) 

Where Δx is a small movement in the direction of the probe laser propagation. Upon 
summation along the entire propagation direction from x0 to xn, we have 

 
𝜃𝜃 = � ∆𝜃𝜃

𝑥𝑥0→𝑥𝑥𝑛𝑛

=
𝛼𝛼

2𝑛𝑛𝑐𝑐𝑐𝑐
�∇𝑛𝑛𝑒𝑒 ∙ (𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖−1).
𝑛𝑛

𝑖𝑖=1

 (16) 

As an example, if we assume cylindrical geometry in Eq. 3 and inserted into Eq. 
16, we arrive at 

 
𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐 =

𝛼𝛼
2𝑛𝑛𝑐𝑐𝑐𝑐

�
𝜕𝜕𝑛𝑛𝑒𝑒
𝜕𝜕𝑦𝑦

(𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

 (17) 

with the understanding that 𝑑𝑑0 = −𝑑𝑑 and 𝑑𝑑𝑛𝑛 = 𝛾𝛾. This yields 2 results, 

 
𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝐺𝐺 = 𝛼𝛼𝛼𝛼𝑦𝑦 𝑛𝑛0

𝑛𝑛𝑐𝑐𝑐𝑐
exp(𝛼𝛼𝑦𝑦2)∑ exp(𝛼𝛼𝑑𝑑𝑖𝑖2)(𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖−1)𝑛𝑛

𝑖𝑖=1 , (18) 

 
𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝑃𝑃 = − 𝑀𝑀𝑛𝑛0

2𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓
2 𝑦𝑦 ∑ (𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖−1)𝑛𝑛

𝑖𝑖=1 , (19) 

depending on Gaussian and parabolic profile, respectively. 

2.4 Phase Sensitivity to Electron Density 

An important consideration that stems from Eqs. 7, 10, 13, and 14 is the maximum 
phase change the probe beam will experience across the extent of the plasma. In the 
cylindrical geometry case, by solving for 𝜕𝜕𝜃𝜃 𝜕𝜕𝑦𝑦� = 0, we arrive at 

 
𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝐺𝐺,𝑚𝑚𝑚𝑚𝑥𝑥 = ±

𝐴𝐴𝑐𝑐𝜕𝜕𝑐𝑐
𝛾𝛾√2

exp �−
1
2
� (20) 

 𝜃𝜃𝑐𝑐𝜕𝜕𝑐𝑐,𝑃𝑃,𝑚𝑚𝑚𝑚𝑥𝑥 = ±
𝛼𝛼𝑛𝑛0
𝑛𝑛𝑐𝑐𝑐𝑐

 
(21) 

for Gaussian and parabolic profiles, respectively. Similarly for spherical geometry 
and solving for 𝜕𝜕𝜃𝜃 𝜕𝜕𝜌𝜌� = 0, 

 
𝜃𝜃𝑠𝑠𝑠𝑠ℎ,𝐺𝐺,𝑚𝑚𝑚𝑚𝑥𝑥 = ±

𝐴𝐴𝑠𝑠𝑠𝑠ℎ
𝛾𝛾√2

exp �−
1
2
� (22) 
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 𝜃𝜃𝑠𝑠𝑠𝑠ℎ,𝑃𝑃,𝑚𝑚𝑚𝑚𝑥𝑥 = ±
𝛼𝛼𝑛𝑛0
𝑛𝑛𝑐𝑐𝑐𝑐

 
(23) 

for Gaussian and parabolic profiles, respectively. The maximum phase change will 
help us to determine the sensitivity of an optical system given the probe 
wavelength, layout of the optics, extent of the plasma, and sensitivity of the Shack-
Hartmann sensor. 

3. Electron Densitometer Description 

The Shack-Hartmann method offers a significant increase in resolution of phase 
changes, θ, in the laser probe beam. Because of the advanced algorithms used in 
proprietary software, small phase changes can be translated into perturbations 
smaller than the probe wavelength. A diagram of SHED is shown in Fig. 3b with 
the critical component being the Shack-Hartmann wavefront sensor (WFS). In this 
case, phasefront and wavefront can be used interchangeably. The selected WFS, as 
seen in Fig. 3c, is Imagine Optics’s HASO3-128 GE featuring a 128 × 128 lenslet 
array mounted on a 12-bit CCD camera. The WFS has a 14.6- × 14.6-mm2 aperture 
and is calibrated for a probe wavelength between 630 and 900 nm. The probe 
samples a cross section of approximately 2 × 2 mm2, resulting in a magnification 
factor M ≈ 7. The minimum sensitivity of the WFS is 1 µrad at 800 nm which, via 
Eq. 21, would equate to an electron density of n0 = 2.5 × 1014 cm-3 in the parabolic 
case with cylindrical geometry. This can be considered a good approximation of 
the minimum recordable electron density for this SHED setup. 
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Fig. 3 Experimental components including a) the general optical setup with pump and probe 
beam path including a delay line, b) diagram of the Shack-Hartmann Electron Densitometer, 
and c) the HASO3 128 GE wavefront sensor 

4. Experimental Setup 

The electron densitometer was first tested with the US Army Research Laboratory’s 
USPL located at Aberdeen Proving Ground (APG), Maryland. The laser system is 
the Coherent Hidra-25 that uses Titanium:Sapphire (Ti:Sapph) gain medium and 
chirped pulse amplification technologies. The system produces up to 20 mJ in 100 
fs (peak power of up to 200 GW) at a repetition rate of up to 10 Hz at a wavelength 
of 800 nm. As shown schematically in Fig. 3a, the laser pulse passes through a 
beam splitter allowing for approximately 2% of the energy to be sent into the probe 
beam path and the rest (pump beam) used to generate the plasma in air. The probe 
beam is filtered with neutral density glass to prevent damage to SHED.  

The plasma is created by focusing the pump beam either through geometric 
focusing, nonlinear self-focusing, or a combination of the 2. Higher-density 
plasmas are typically created with shorter focal length lens; higher-density plasmas 
are easier to diagnose in this case. Therefore, the experimental verification of 
SHED began with a 10-cm focal length lens and gradually worked to a longer focal 
distance. The probe beam is situated to cross near the focal point of the pump beam 
and overlap in time. With these shorter focal lengths, nonlinear self-focusing is 
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small compared to the geometric focus. This holds true until about 0.5-m focal 
length distances at which point we approach the criteria necessary for filamentation. 
In filaments, the energy is essentially stretched over a longer distance resulting in 
a lower electron density.  

5. Results 

Images captured on the WFS were translated into phasefront maps via Imagine 
Optic’s Haso 3 software. The algorithms incorporated into the software are 
proprietary; however, the data were analyzed in a zonal fashion rather than a modal 
fashion given the lack of any anticipated radial symmetry in the probe direction. 
Tip and tilt are automatically corrected, and each acquisition is compared against a 
control image without a plasma. As shown in Fig. 4a, the probe beam intensity is 
greatly distorted, primarily from laser fluctuations and air turbulence. However, the 
Haso 3 software is able to retrieve a distinct signature (Fig. 4b) resulting from the 
laser-produced plasma in a single laser pulse. Despite the relative insensitivity to 
intensity variations in the probe beam, variations arising from the distortion of the 
phasefront from turbulence can have a significant effect. As seen in Fig. 5a, these 
variations are on the order of phasefront change resulting from the plasma as we 
moved to longer focal lenses and hence weaker plasmas. While the sensitivity of 
SHED is expected to be as low as 1 µrad, the effects of turbulence in the lab reduce 
this to the order of 100 s of milliradians. This result is emphasized further with a 
focal lens of 50 cm as seen in Fig. 6. This results in minimum recordable n0 on the 
order of 1019 cm-3 as compared to the calculations represented in Fig. 5b. Also, the 
dip in the center of the phase change seen in Fig. 5b is not recorded in any of the 
phasefronts, likely due to a lack of fine resolution and variations from a radially 
symmetric plasma column.  

 
Fig. 4 Data gathered from probing of plasma created with f = 10 cm and E = 2 mJ: a) raw 
image with color scale in arbitrary units; b) HASO 3–generated phasefront map with color 
scale in radians 
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Fig. 5 a) Cross section of phasefront map with the E = 2 mJ,  f = 10-cm data corresponding 
to Fig. 4b. b) Phase change calculated from Eq. 10 based on varying electron densities and 
including a magnification factor, M = 7. 

 

 

Fig. 6 Cross section of phasefront map for f = 50 cm at varying energies 

In addition, by using a delay line in the path of the probe beam, one can image the 
evolution of the plasma. The advantage of using an ultrashort probe beam is to 
essentially freeze physical phenomenon. This can be seen in Fig. 7 where the front 
of the laser pulse is just starting to ionize air with full ionization across the SHED 
field of view within approximately 1.33 ps. With a 100-fs laser pulse, the spatial 
extent would only be approximately 30 µm, which would simultaneously cover 
about 2 lenslets at this magnification. As the plasma dynamics unfold long after the 
laser pulse has left, we see a gradual enlargement of the area of phasefront 
disturbance as the plasma dissipates and free electrons begin to recombine with 
ions. These dynamics happen well before any acoustic propagation of energy in the 
form of a shockwave as reported by Milchberg et al.21 
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Fig. 7 Temporal scan of phasefront from E = 4.2 mJ, f = 25 cm where a) is an arbitrary t = 0, 
and relative delay shown in b–f. 

6. Future Work 

Improvements planned in future work include turbulence mitigation and working 
toward a full 3-D reconstruction. As the data presented have demonstrated, effects 
from air turbulence and laser fluctuations can easily overwhelm the signal created 
by the plasma at longer focal lengths. While laser fluctuations can be handled with 
modifications and maintenance of the USPL, air turbulence remains a significant 
factor when probing over long propagation distances. The primary mitigation for 
this will be to enclose the probe beam as much as practicable. Certain areas such as 
the delay line present complications, but large enclosures can be helpful. Another 
tactic is to use higher-repetition-rate lasers with shorter pulse durations.22 We plan 
to use the new USPL at APG (Coherent Astrella) that generates 30-fs pulses at a  
1-kHz repetition rate at an 800-nm wavelength. 

A further addition would be to split the probe beam into 2 orthogonal components 
crossing through the filament as shown in Fig. 8. By using tomographic 
mathematical techniques, researchers could produce a 3-D reconstruction of the 
filament plasma density with time resolution on the same scale as the initial laser 
pulse itself. A full picture can be derived by passing the probe beam through a 
spatial delay stage arriving at 4-D reconstruction of the evolution of the free 
electron density in a filament. This is accomplished by splitting the current probe 
beam into 2 components and passing one arm through a beta barium borate crystal 
that frequency doubles the wavelength to 400 nm. This reduces the potential for 
interference between all 3 beams and reduces the need for perfect orthogonality. 
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This also requires the WFS to be specially calibrated for that wavelength, which is 
an available option on the HASO 3.  

 

Fig. 8 A 2-axis SHED system for 3-D reconstruction of electron density profile; probe laser 2 
is frequency doubled 

7. Conclusion 

SHED offers a unique method to diagnose free electron density with at least 2-D 
resolution in a single shot. The precision afforded by using the Shack-Hartmann 
technique will allow for much finer density resolution than standard interferometry 
at these probe wavelengths. By using a portion of the same laser pulse to probe the 
plasma, ultrashort time resolutions are possible, detailing the evolution of free 
electrons during and after ionization. SHED has also been shown to be resilient to 
variations in the intensity of the probe laser beam; however, it is subject to phase 
variations created by the laser and air turbulence. Further refinement of SHED will 
lead to new understanding of the complex dynamics of USPL-created plasmas. 
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List of Symbols, Abbreviations, and Acronyms 

2-/3-/4-D   2-/3-/4-dimensional 

APG   Aberdeen Proving Ground 

CCD   charge-coupled device 

SHED   Shack-Hartmann Electron Densitometer 

USPL   ultrashort pulse laser 

WFS   wavefront sensor 
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